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1 Introduction

Aggregate loss models are frameworks used for analyzing aggregate loss amounts for a portfolio of individual
contingent risks. The aggregate loss is the summation of all random losses occurring in a period, and it
is governed by both the loss severity and the loss frequency. There have been several studies on the
impact of the loss severity on aggregate loss, but less focus is paid on the influence of loss frequency
on aggregate loss, hence we dive deeper into a well-known distribution used for counting the frequency of
events – the Poisson distribution, and then demonstrate how the aggregate model could be simulated using
the R software.

We will discuss a probability model used to describe the aggregate claims by an insurance system occurring
in a finite time period. The insurance system could be a single policy, a group insurance contract, a business
line, or an entire book of an insurer’s business. In this study, aggregate claims refer to either the number
or the amount of claims from a portfolio of insurance contracts. However, the modeling framework can be
readily applied in the more general setup.

In actuarial applications we often work with loss distributions for insurance products. The Compound
Poisson distribution arises in many situations in the theory of risk (Hardy 2006). For example, in property
and casualty insurance, we may develop a compound Poisson model for the losses under a single policy or a
whole portfolio of policies. Similarly, in life insurance, we may develop a loss distribution for a portfolio of
policies, often by stochastic simulation.

When employers (insurers) provide insurance to their employees (insureds), they are concerned about claim
frequency- the random number of claims filed, and claim severity - the random size of each claim.
Additionally, they are especially concerned about aggregate claims, the sum total of all the claims. This
is the sum of a random number of random variables, and as such is extremely complicated to analyze; such a
probability distribution is called a compound distribution. If frequency is assumed to follow a Poisson
process and the severities are independent and all have the same probability distribution, the result is a
compound Poisson process.

2 Definitions

2.1 Counting Processes

A random process {N(t), t ∈ [0, ∞)} is a counting process if,

1. N(0) = 0.

2. N(t) ∈ {0, 1, 2, 3, 4, ...} and is non-decreasing.
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2.2 Poisson Processes

A counting process N(t) is a Poisson process with rate λ(t) if,

1. N(t) has independent increments. That is the set N(tj + sj) − N(tj), j ∈ {0, 1, 2, ..., n} is independent
for each non-overlapping increment (tj , tj + sj ].

2. For all t ≥ 0 and sj > 0 , N(t+sj)−N(t) ∼ POIS(Λ) where Λ =
∫ t+sj

t
λ(z)dz. Note that this implies

that limsj→0 Λ = 0.

2.3 Compound Poisson Process

A compound Poisson process S(t) is defined as follows:

1. For t > 0, S(t) =
∑N(t)

i=1 Xi, where N(t) is a poisson process with rate function λ,

2. All random variables Xi and {N(t), t > 0} are independent and identically distributed, and

3. N(t) = 0 =⇒ S(0) = 0.

3 Applications of Compound Poisson

In 1993, the Chicago Board of Trade introduced a futures contract on financial index that reflects the insurance
claims emerging from catastrophes in a portfolio of policies. A compound Poisson model was used to model
the contract when the frequency of the catastrophe was counted using the Poisson process (Carriere and Buhr
1995).

Consider an insurance portfolio of n individual contracts, and let S denote the aggregate losses of the portfolio
in a given time period. There are two approaches to modeling the aggregate losses S, the individual risk
model and the collective risk model. The individual risk model emphasizes the loss from each individual
contract and represents the aggregate losses as:

Sn = X1 + X2 + · · · + Xn,

where,

• Xi (i = 1, . . . , n) is interpreted as the loss amount from the
ith contract.

• n denotes the number of contracts in the portfolio and thus is a fixed number rather than a random
variable.

For the individual risk model, one usually assumes the Xi’s are independent. Because of different contract
features such as coverage and exposure, the Xi’s are not necessarily identically distributed. A notable feature
of the distribution of each Xi is the probability mass at zero corresponding to the event of no claims.

The collective risk model represents the aggregate losses in terms of a frequency distribution and a severity
distribution:

SN = X1 + X2 + · · · + XN .

Here, one thinks of a random number of claims N that may represent either the number of losses or the
number of payments. In contrast, in the individual risk model, we use a fixed number of contracts n. We
consider X1, X2, . . . , XN as representing the amount of each loss. Each loss may or may not correspond to
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a unique contract. For instance, there may be multiple claims arising from a single contract. It is natural to
think about Xi > 0 because if Xi > 0 then no claim has occurred. Typically we assume that conditional on
N = n, X1, X2, . . . , Xn are independent and identically distributed random variables.

The distribution of N is known as the frequency distribution, and the common distribution of X is
known as the severity distribution. We further assume N and X are independent. With the collective
risk model, we may decompose the aggregate losses into the frequency (N) process and the severity (X)
model. This flexibility allows the analyst to comment on these two separate components. For example, sales
growth due to lower underwriting standards could lead to higher frequency of losses but might not affect
severity. Similarly, inflation or other economic forces could have an impact on severity but not on frequency.

3.1 Individual Risk Model

As discussed previously, for the individual risk model, we think of Xi as the loss from ith contract and
interpret

Sn = X1 + X2 + · · · + Xn,

to be the aggregate loss from all contracts in a portfolio or group of contracts. Here, the Xi’s are not
necessarily identically distributed and we have

E(Sn) =
n∑

i=1
E(Xi) .

Under the independence assumption on Xi’s (i.e. Cov (Xi, Xj) = 0 for all i ̸= j),

Var(Sn) =
n∑

i=1
Var(Xi).

3.2 Collective Risk Model

The collective model SN = X1 + · · · + XN are independent and identically distributed, and independent of
N . Let µ = E (Xi) and σ2 = Var (Xi) for all i.

Thus, conditional on N = n, we have that the expectation of the sum is the sum of expectations and that
the variance of the sum is the sum of variances,

E(S|N = n) = E(X1 + · · · + XN |N = n) = µn

Var(S|N = n) = Var(X1 + · · · + XN |N = n) = σ2n.

The mean aggregate loss, using iterated expected values, is

E(SN ) = EN [ES(S|N = n)] = EN (Nµ) = µ E(N).

The variance of the aggregate loss is, using the law of total variance, is

Var(SN ) = EN [Var(SN |N = n)] + VarN [E(SN |N = n)]
= EN

[
σ2N

]
+ VarN [µN ]

= σ2 E[N ] + µ2 Var[N ].
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If the frequency is Poisson distributed, i.e. N ∼ Poi(λ), we have the special case of a Compound Poisson

E(N) = Var(N) = λ

E(SN ) = λ E(X)
Var(SN ) = λ(σ2 + µ2) = λ E(X2).

3.3 Exponential Dispersion Models (Tweedie Models)

We explore a special compound distribution where the number of claims has a Poisson distribution and
the amount of claims has a gamma distribution. This type of compound Poisson is known as Tweedie
Distribution. Each claim size follows a gamma distribution, Xi ∼ Gamma(α, β), with an expected value
of E(X) = αβ and variance V ar(X) = αβ2.

When no claims occur, the aggregate loss is zero, that is,

Pr(SN = 0) = Pr(N = 0) = e−λ.

The Tweedie distribution is considered a mixture of zero and a positive valued distribution, which makes it
a convenient tool for modeling insurance claims and for calculating pure premiums. The mean and variance
of the Tweedie compound Poisson model are:

E(SN ) = λαβ and Var(SN ) = λαβ2(1 + α).

3.4 Simulation

For aggregate losses, the idea is that one can calculate the empirical distribution of SN using a random
sample. The expected value and variance of the aggregate loss can also be estimated using the sample mean
and sample variance of the simulated values.

3.4.1 Example

Consider an insurance company that sells liability motor insurance where an individual’s claim frequency, N ,
follows a Poisson distribution with mean λ = 25 and their claim severity, X, follows the Gamma distribution
with shape parameter α = 5 and scale parameter β = 300. Using a simulated sample of 10,000 observations,
we could estimate the mean and variance of the aggregate loss SN as given below;

#a function for simulating the tweedie distribution
tweedie <- function(lambda, alpha, beta){

S_N = 0
for (j in 1:10000) {

#sample a random variable from the poisson distribution
N <- rpois(1, lambda)
if (N == 0){

S_N[j] <- 0
}
else if (N > 0){
#sample the loss severity from the gamma distribution
X <- rgamma(N, alpha, 1/beta)
#sum the losses to give the aggregate loss distribution
S_N[j] <- sum(X)
}
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}
#finding mean and standard deviation of the aggregate loss model
m <- round(mean(S_N), 2)
sd <- round(sd(S_N), 2)

#plot distribution of aggregate loss distribution
print(hist(S_N, main = "Distribution Plot for Tweedie Distribution",

xlab = "Aggregate losses (USD)"))

return(c(m,sd))
}

value <- tweedie(25, 5,300)

Distribution Plot for Tweedie Distribution
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Figure 1: A histogram of the distribution of aggregate losses of the Tweedie Distribution

From Figure 1, it can be seen that with large simulations the losses are approximately normally distributed
centered around $37,000.

The simulated mean aggregate loss is $37374.97 with a standard deviation of $8186.02. This compares
favorably with theory based methods as we would estimate our mean aggregate loss to be E(SN ) = λαβ =
25(5(300)) = $37, 500 with a standard deviation of

√
V ar(SN ) =

√
λαβ2(1 + α) =

√
25(5)(300)2(1 + 5) =

$8215.84.

We would expect the aggregate loss of the insurance company to be within $8,215.84 of $37,500 on average.
This means the insurer would expect the true aggregate loss to be within $37, 335.68 and $37, 664.32. Hence,
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the fixed price for the insurance product is $37,500 since insurance products are not sold in the liquid market
and the risk associated with the product is $8,215.84.

4 Conclusion

The objective of our work thus far has helped us to better understand how to model the aggregate loss
an insurance company would expect within a finite time period. We defined and used Compound Poisson
processes to model individual and collective risks and then moved on to Tweedie models to find the expected
aggregate loss an insurance company would accrue by selling liability motor insurance. More generally,
Compound Poisson Processes are useful in modelling several problems that arise within actuarial science or
queuing theory in general.
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