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Introduction

The growth of the insurance industry is fueled by societal expectations for protection against a variety of
risks associated with unfavorable random events that have a large economic impact. Insurance is a process
that involves the payment of a premium in exchange for an equitable manner of offsetting the risk of a
potential future loss. The basic idea is to set up a fund to which insured members contribute specified sums
of premium for specific loss levels. When the random events that policyholders are protected against occur,
this gives rise to claims which are then settled from the fund.
The Maximum Likelihood Estimation (MLE) technique is commonly used by insurance firms to estimate
claim distribution parameters. Maximum likelihood techniques are typically applied to complete data sets
where we have exact values for all of the data points; however, data is rarely perfect in real life. When
modeling the underlying loss variable, insurance contracts have coverage adjustments that must be taken into
account. Typically, loss control methods such as deductibles, policy limits, and coinsurance are implemented
to reduce undesirable policyholder behavioral effects such as adverse selection.
Estimation by method of moments and maximum likelihood are often easy to do, but these estimators
tend to perform poorly, mainly because they use a few features of the data rather than the entire set of
observations. It is important to use as much information as possible when the population has a heavy tail as
in insurance data. This paper discusses some considerations for properly handling truncated and censored
data for modeling of insurance data. The methods to be discussed are Maximum Likelihood Estimations
and the EM Algorithm.

Methodology

Maximum Likelihood Estimation

Insurance Contracts

Insurance contracts have coverage modifications that need to be considered when modeling the underlying
loss variable. Usually, the coverage modifications such as deductibles, policy limits, and coinsurance are
introduced as loss control strategies so that unfavorable policyholder behavioral effects can be minimized.
There are also situations when certain features of the contract emerge naturally (e.g., the value of insured
property in general insurance is a natural upper policy limit). Here we describe two common transformations
of the loss variable along with the corresponding probability distribution/mass functions.

Truncation

Incomplete data in the form of truncation occurs when an observation is not recorded due to that observation
being below or above a certain threshold. In practice these are referred to as left truncation and right
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truncation respectively. A common example of left truncation that arises in practice when working with
insurance data is with ordinary insurance deductibles.

Left Truncation

An observation is left truncated at d if it is not recorded when less than or equal to d and recorded at the
observed value if the observation is greater than d. Let X be a random variable representing the size of
loss and L be a random variable representing the recorded value. Mathematically, left truncation would be
represented as:

L =
{

not recorded : x ≤ d

x : x > d

The likelihood function is
f(x|x > d) = f(x)/S(d)

where S(·) = 1 − F (·) There are a variety of ways that insurance deductibles operate, but with ordinary
insurance deductibles there is no incentive for policyholders to report losses less than the deductible amount
to the insurance company. In this situation, the insurer’s data is left truncated for these losses which would
be paid by the policyholder and not recorded in the insurer’s data systems.

Censoring

Incomplete data in the form of censoring occurs when the observation is recorded at a fixed value if it is below
or above a certain threshold. In practice this is referred to as left censoring and right censoring respectively.
The right censoring situation arises frequently when working with policy limits in insurance data.

Right Censoring

An observation is right censored at u if it is recorded at its observed value if less than u and recorded at
u if the observed value is greater than or equal to u. Let X be a random variable representing the size of
loss and L be a random variable representing the recorded value. Mathematically, right censoring would be
represented as:

L =
{

x : x < u

u : x ≥ u

f(x|u) = FX(u) + SX(u)

It is common for an insurance policy to have a limit which is the maximum amount that the insurer will
pay under the terms of the insurance agreement. In situations where the actual damages exceed the limits
of the policy, the payment from the insurer will be limited to the policy limit and the loss will be considered
right censored.

The derivation of the estimator for the parameter through the maximum likelihood approach is as follows:

• Likelihood function

2



L(θ) =
n∏

i=1

1
θ e−xi/θ

e−di/θ
·

n+c∏
i=n+1

e−xi/θ

e−di/θ

=
n∏

i=1

1
θ

e−(xi−di)/θ ·
n+c∏

i=n+1
e−(xi−di)/θ

= 1
θn

e−
∑n+c

i=1
(xi−di)/θ

• The log-likelihood and derivative

ℓ(θ) = −n ln θ −
∑n+c

i=1 (xi − di)
θ

ℓ′(θ) = −n

θ
+
∑n+c

i=1 (xi − di)
θ2 = 0

• The estimator
θ̂MLE =

∑n+c
i=1 (xi − di)

n

Application

To demonstrate how the methods described in the previous section is used in the insurance industry, We are
given the information in Table 1 about a group of policies and assume payments at the policy limit resulted
from losses above the maximum covered loss.

Table 1: Insurance Claims payments with deductibles and policy limits.

Claim.Payment Deductible Policy.Limit
30 0 80
50 10 100
80 10 100

120 20 150
150 30 150

We also will assume that the losses follow the exponential distribution. The aim is to determine the likelihood
function and the maximum likelihood estimate of the mean losses assuming that the losses are independent.

Table 2: Insurance data with maximum covered losses and their respective likelihood funtions.

Loss.Payment Deductible Maximum.Covered likelihood.function
30 0 80 f(30)
60 10 110 f(60)/S(10)
90 10 110 f(90)/S(10)
140 20 170 f(140)/S(20)
180+ 30 180 S(180)/S(30)
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L(θ|x) = f(30) f(60)
S(10)

f(90)
S(10)

f(140)
S(20)

S(180)
S(30)

L(θ|x) = 1
θ

e− 30
θ

1
θ e− 60

θ

e− 10
θ

1
θ e− 90

θ

e− 10
θ

1
θ e− 140

θ

e− 20
θ

e− 180
θ

e− 30
θ

L(θ|x) = 1
θ

e− 30
θ

1
θ

e− 50
θ

1
θ

e− 80
θ

1
θ

e− 120
θ e− 150

θ

L(θ|x) = 1
θ4 e− 430

θ

logL(θ|x) = ℓ(θ|x) = −4ln(θ) − 430
θ

d

dθ
ℓ(θ|x) = −4

θ
+ 430

θ2 = 0

−4θ + 430 = 0
4θ = 430

θ = 430
4 = 107.5

Now we check if θ is the maximum.

d2

dθ2 ℓ(θ|x) = 4
θ2 − 860

θ3

d2

dθ2 ℓ(θ|x) = 4
107.52 − 860

107.53 = −0.000346 < 0

Hence, θ̂MLE = 107.5

Alternatively

θ̂MLE for an exponential distribution is given by

θ̂MLE =
∑n+c

i=1 (xi − di)
n

θ̂MLE = 30 + 50 + 80 + 120 + 150
4 = 107.5

Where;

n = number of uncensored data c = number of censored data points xi = observed loss value, or censoring
point, or censored data di = truncated point

insurance_payment <- read_excel("insurance.payment.xlsx")

exponential.mle <- function(payment,max.covered){
theta.mle <- sum(payment)/ length(payment[payment < max.covered])
return(theta.mle)

}

exponential.likelihood <- function(payment, theta){
n <- length(payment)
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likelihood <- 0
for(i in 1:length(theta)){
power <- -sum(payment)/theta[i]
likelihood[i] <- -n*log(theta[i])+power
}
data <- tibble(theta = theta, likelihood = likelihood)
plot <- data %>%

ggplot(aes(x = theta, y = likelihood)) +
geom_point()+
xlim(0,1000) +
ylim(-30000,0)

return(plot)
}
payment <- insurance_payment$payment
max.covered <- 1100
theta <- 1:7000
exponential.mle(payment , max.covered)

## [1] 525.5

exponential.likelihood(payment, theta)
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The EM Algorithm

The EM Algorithm has its roots in work done in the 1950s but really came into statistical prominence after
the seminal work of Dempster, Laird, and Rubin, which detailed the underlying structure of the algorithm
and illustrated its use in a wide variety of applications. (Casella and Berger 2002).

Another common tool used for getting a maximum-likelihood estimation of censored data is called the EM
Algorithm. Here, the ‘E’ canonically stands for the ‘Expectation’ step and ‘M’ represents the ‘Maximization’
step. Hence the EM Algorithm takes the expectation of the log-likelihood function, then maximizes that
quantity. It repeats that process until the parameter converges to a specified value.

Formally, if we let θ(p) represent the pth iteration of the algorithm to estimate the parameter θ. these two
steps can be written out as follows:

Expectation (E-Step): Compute Q
(
θ(p)|θ(p−1)) = E

[
log
(
f(x|θ(p)) |y, θ(p−1)] where x repre-

sents the complete data and y represents the censored, or incomplete data.

Maximization (M-Step): Maximize Q
(
θ(p)|θ(p−1))

The EM algorithm can often lead to functions that are tricky to evaluate. However in special cases, such as
the exponential family family case, the algorithm becomes much easier to evaluate. Specifically a function
f(x|θ) is an exponential family if it can be written as f(x|θ) = h(x)c(θ) exp

(∑k
i=1 wi(θ)ti(x)

)
. It has been

shown that we can use the complete sufficient statistic T (X) =
∑k

i=1 ti(x) to estimate the parameter θ. This
is done as follows:

Expectation (E-Step): Estimate t(x) by finding t(p−1) = E
(
t(x)|y, θ(p−1)) where x represents

the complete data and y represents the censored, or incomplete data.

Maximization (M-Step): Determine θ(p) as the solution to E (t(x)|θ) = t(p−1)

Example (Exponential Distribution)

For a definitive example, suppose we have data from an exponential distribution with unknown parameter
θ. For each sample, we are giving a vector of values, (c(1,i), c(2,i), xi), where c(1,i) represents a left-censoring
point, c(2,i) represents a right-censoring point, and xi is the value the sample. If the ith sample is present,
or rather if c(1,i) < xi < c(2,i) , we will call define yi = xi. Analogously, if the ith sample is left-censored, or
c(1,i) ≥ xi, we will define li = xi and if it is right-censored, or xi ≥ c(2,i), we will define ri = xi. Hence, x is
a vector of our complete data, y is a vector of our incomplete data, l is a vector of our left-censored data,
and r is a vector of our right-censored data. Our object is to use the EM algorithm to estimate θ using only
y and the censoring points c(1,i) and c(2,i) corresponding with the values known in landr.

To begin, note that a random sample for the exponential family has a complete sufficient statistic of
∑n

i=1 xi.
Hence for the E-Step we must find the expectation of E(

∑n
i=1 xi|y, θ(p−1)), which we can expand as:

E

(∑
xi∈y

yi +
∑
xi∈l

li +
∑
xi∈r

ri

)

Now, we need to estimate our censored data, li and ri. To do this, we will use the memoryless property of
the exponential distribution to get li = min{θ(p−1), c(1,i)} and ri = c(1,i) + θ(p−1).

Note that

E(li) =
∫ c(1,i)

0 min{θ(p−1), c(1,i)} 1
θ(p−1) e−xi/θ(p−1)

dxi∫ c(1,i)
0

xi

θ(p−1) e−xi/θ(p−1) dxi

=
min{θ(p−1), c(1,i)} − min{θ(p−1), c(1,i)}e−c(1,i)/θ(p−1)

θ(p−1) − (c(1,i) + θ(p−1))e−c(1,i)/θ(p−1)
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Therefore, we can simplify our expectation of E
(∑

xi∈y yi +
∑

xi∈l li +
∑

xi∈r ri

)
to

∑
xi∈y

yi +
∑
xi∈l

min{θ(p−1), c(1,i)} − min{θ(p−1), c(1,i)}e−c(1,i)/θ(p−1)

θ(p−1) − (c(1,i) + θ(p−1))e−c(1,i)/θ(p−1) +
∑
xi∈r

c(1,i) + θ(p−1)

And our maximization step is the solution to

E(t(x)|θ(p)) = E(
n∑

i=1
xi|θ(p)) = n θ(p)

=
∑
xi∈y

yi +
∑
xi∈l

min{θ(p−1), c(1,i)} − min{θ(p−1), c(1,i)}e−c(1,i)/θ(p−1)

θ(p−1) − (c(1,i) + θ(p−1))e−c(1,i)/θ(p−1) +
∑
xi∈r

c(1,i) + θ(p−1)

=⇒ θ(p) = 1
n

(∑
xi∈y

yi +
∑
xi∈l

min{θ(p−1), c(1,i)} − min{θ(p−1), c(1,i)}e−c(1,i)/θ(p−1)

θ(p−1) − (c(1,i) + θ(p−1))e−c(1,i)/θ(p−1) +
∑
xi∈r

c(1,i) + θ(p−1)

)

Simulation (Exponential Distribution)

In the actuarial context, we could encounter data that includes the deductible, policy limit, and losses
for each customer, where the losses would be unreported if they exceed the policy limit or are below the
deductible.

We will use computer simulation to see how well the algorithm holds given the parameter θ = 1000.

set.seed(53523)

#Simulate Data
n_customers <- 1000
damages <- round(rexp(n_customers, 1/1000),2)
deductible <- round(runif(n_customers, min = 0, max = 600))
limit <- round(runif(n_customers, min = 5000, max = 20000))

#combine data into one data frame
customers <- as.data.frame(cbind(deductible, limit, damages))
#censor data
left <- customers[(damages < deductible),]
right <- customers[(limit < damages),]

observed <- customers %>%
filter(damages > deductible & limit > damages)

#EM Algorithm
sum_observed <- sum(observed$damages)

#Initialize theta
theta_new <- 500
theta <- 0

#iterate until difference between previous theta and new theta is small
while((theta - theta_new)ˆ2 > 0){

theta <- theta_new
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#Expectation step
m <- min(theta, left$deductible)

#Maximization step
theta_new <- (sum((m-m*exp(-left$deductible/theta)) / (theta -(left$deductible + theta)*

exp(-left$deductible/theta))) + sum(right$limit + theta) + sum(sum_observed))/n_customers
}
theta_new #display outcome

## [1] 970.7771

The output from this simulation estimated the value of θ to be 970.777086, which is 29.222914 from the
known value of 1000.
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