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Abstract

Causal analysis attempts to allow researchers to make causal inference

from any type of study, even those without random assignment of some

treatment to sample units. A common step in the process of drawing causal

inference is the creation of a diagram of a hypothesized causal structure,

usually a directed acyclic graph (DAG). When two DAGs yield the same

conditional dependencies, they are called Markov equivalent. This equivalence

implies that two distinct causal structures may produce similar observable

data patterns, making it impossible to determine the true causal relationships

between variables from data alone. The use of expert knowledge can help

identify the most plausible causal structures from a set of equivalent models

in a Markov equivalence class. In this introduction to causal diagrams and

equivalence classes, the concept of Markov equivalencies, their importance in

causal inference, and two approaches to identifying them will be introduced.

Confounding and mediating causal structures will be discussed in detail and

methods for simulating data from a confounding structure will be presented.

The methods presented in this paper aim to help researchers understand the

methodology required to make causal inference from observational data.
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1 Introduction

Statistical analyses seek to understand how variables within a system of data are

related. A traditional analysis begins by choosing a statistical model that could

approximate a system of interest and then choosing a subset of parameters in the

model that could explain aspects of interest in the system. Data are then collected

in a manner that allows the researcher to make inference on the chosen parameters.

Two types of inference could be sought for, either a causal or associational

relationship between variables. An associational relationship implies that, given

static external conditions, the relationship between two variables would remain the

same. Causal inference seeks to understand how relationships between variables

change under dynamic conditions, such as changing the value of a variable in a

system (Pearl, 2009). Pearl asserts that, given a large enough sample size, any

associational assumption can be tested. “Causal assumptions, in contrast, cannot be

verified even in principle, unless one resorts to experimental control (Pearl, 2009).”

The researcher should always carefully examine how the data were collected to

determine if a causal claim is appropriate or if their results can be generalized

beyond the scope of their study.

The gold standard for determining a causal e↵ect is by testing the dynamic

conditions between two variables, meaning how changing the value of one covariate

e↵ects the other, in a randomized controlled trial. In a randomized controlled trial,

treatments are randomly assigned to experimental units and the outcome of interest

is measured. The randomizing mechanism should distribute potential confounding

variables evenly across treatment levels. Due to the randomizing mechanism being

the only prior cause of the treatment, it is safe to assume that the e↵ect of the

treatment on the outcome is causal because the potential confounding variables are

assumed to be evenly distributed across treatment levels (Huntington-Klein, 2022).

Unfortunately, there are many situations in which a randomized controlled trial
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Table 1: Definitions of common terms used in causal inference, adapted from Grace
et al. (2012) Huntington-Klein (2022) and Pearl (2000).

Causal Diagram A causal diagram consists of a graph where nodes
represent di↵erent variables and directed edges represent
the impact of the variable at the tail of the arrow on the
head of the arrow.

Induced dependency In a causal model, if an edge connects one node to
another, we say the diagram has induced a dependency
between the two nodes, as those nodes are no longer
independent.

Directed acyclic graph (DAG) A directed acyclic graph, such as shown in Figure 1, is
a special type of graph where all the edges are directed
and there are no cycles (meaning one cannot trace back
to the same node if traveling from tail to head along
edges) contained in the graph.

Endogenous/Exogenous A variable is endogenous if its causes are variables within
the structural equation model. A variable is exogenous if
its causes are not within the structural equation model.

Markov equivalent Two graphs are Markov equivalent if they yield the same
induced dependencies.

Parent/Child node A node A in a graph is the parent of another node B

if there is an arrow pointing from A to B. Similarly, B
would be called the child of A.

Path Coe�cient The path (or regression) coe�cient from A to B
represents the causal e↵ect A has on B.

Collider If a node along a path only has heads of arrows pointing
towards it, such as the node C on the path A→ C ← B

in Figure 1, it is called a collider.
Skeleton The skeleton of a graph is created by replacing all

directed edges with undirected edges.
V-Structure When two non-adjacent parent nodes have a common

child the three variables form a v-structure.
D-separation D-separation, short for “dependency separation”, is a

criterion for determining the conditional independence
between two sets of random variables in a causal model
given a third set of variables in the same model.
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is not feasible due to the cost, morality, or outright impossibility of performing an

experiment. When these situations occur, researchers are left with only

observational data, where it is unknown if, in addition to the treatment, other

variables have an e↵ect on the outcome. Making causal inference based on

observational data is a di�cult process that requires making assumptions about how

a distribution changes given external conditions. For example, to make causal

inference in time series, before after control impact analysis (BACI) assumes that

the trajectory of a time series would not change if it were not for an intervention

and that no di↵erences exist between a control and intervention other than those

which are the result of an intervention (Wauchope et al., 2021). Outside of time

series analysis, propensity score matching involves matching pairs of treated and

untreated experimental units based on a measure that is assumed to act like

randomization would if the data were experimental (Simler-Williamson and

Germino, 2022). No matter the analysis, because extra assumptions are required

when analyzing observational data, Pearl (2009) states the ‘golden rule’ of causal

inference is that “behind every causal conclusion there must lie some causal

assumption that is not testable in observational studies.”

When it is not possible to conduct an experiment, structural equation modeling

(SEM) is a common methodology used to determine a causal e↵ect. SEM begins by

specifying a hypothesized causal structure. Causal structures are often represented

as graphs, where a node represents a variable and edges represent the direct

relationship between two variables. Edges are represented as arrows that can be

either bidirectional, signifying the variables are associated (meaning each node could

cause the other), or have a single direction, indicating the root variable has a causal

e↵ect on the other. If a graph only has uni-directional arrows as edges, with no

paths from one variable back to itself, the diagram is called a directed acyclic graph

(DAG). Several common terms that are used in reference to causal structures are
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defined in Table 1.

A milestone in linear structural equation modeling was achieved when the

method of path coe�cients was introduced by Wright (1921) and formalized in

Wright (1934). Wright showed how to decompose a structural model into its

respective variance-covariance matrix. Linear structural equation models, which

Wright decomposed, can be expressed as visual representations of causal

assumptions and are powerful tools for finding closed-form expressions for

relationships of interest (Pearl, 2013). These tracing rules are outlined in Section

2.2. Pearl (1988) gives a brief history of SEM, describing how Wright’s methods

were criticized by Niles (1922) and soon forgotten. Fortunately, Wright’s rules were

rediscovered and used to formalize SEM in the seminal works of Vorobev (1962),

Goodman (1970), and Haberman (1974), which connect covariance decomposition

with graphs. Causal diagrams have become a common way to visualize the causal

assumptions of a structural equation model. Methods to assess the assumptions

encoded by a DAG have since been developed, one of the most common being the

use of d-separation, which is helpful in understanding the concept of Markov

equivalence (Pearl, 1988). Definitions of d-separation and Markov equivalence are

given in Section 2.1.

In terms of graph-theoretic approaches to structural equation modeling, Grace

et al. (2012) provided some practical guidelines for ecologists to follow in their

analyses. These guidelines consist of a series of steps, beginning with the

development of a hypothesis, structural equation metamodel, and drawing of a

causal diagram. A thorough examination and testing of the assumptions implied

through the causal diagram ensues. This involves the specification of the structural

equation model and its estimation and evaluation. During the evaluation process, a

researcher should consider if the model is over-specified or if important edges in the

causal diagram are missing. If deemed appropriate during the evaluation process,
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the researcher can simplify the model and iterate through the process of model

estimation and evaluation until “model-data consistency is declared.” When a final

model that does not severely disagree with the data has been found, one can

examine the underlying “causal assumptions” that the DAG provides. If the

researcher feels those assumptions are reasonable given the additional non-statistical

knowledge they hold, they may report any “causal conclusions” they find to finish

their analysis. Although Grace et al. (2012) wrote these guidelines for ecologists,

this approach to structural equation modeling is useful for most other contexts.

2 Methods

Understanding the theory behind path analysis and Markov equivalencies requires a

knowledge of Wright’s tracing rules. This section of the paper will define Wright’s

tracing rule (Wright, 1934), d-separation and Markov equivalence (Pearl, 1988), and

discuss two common causal structures belonging to the same Markov equivalence

class— the confounding and mediating causal structures. Wright’s tracing rules will

be used to show the Markov equivalence between these two structures

mathematically, and an example of two causal structures that are not Markov

equivalent will be given.

2.1 D-Separation and Markov Equivalence

The concept of d-separation was formalized for use in causal structures by Verma,

Pearl, and Gieger in the 1980s (Pearl, 1988). Recently, Shipley (2000) has developed

a d-separation test based on the criterion presented in the works of Pearl (1988).

Pearl (2000) summarizes the d-separation test as a method of testing whether a set

of X variables is independent of another set, Y variables, given a third set of Z

variables: “The idea is to associate ‘dependence’ with ‘connectedness’ (i.e., the
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B A

C D

�AB

�BC �AC �AD

Figure 1: A DAG depicting the causal relationships between four variables, A,B,C,
and D, with e↵ects labeled on the edges. A has a causal e↵ect on B,C, and D. B
only has an e↵ect on C. C and D do not e↵ect any other variables. This diagram was
adapted from Loehlin and Beaujean (2017)

existence of a connecting path) and ‘independence’ with ‘unconnected-ness’ (i.e., no

path) or ‘separation.’”

D-separation is related to the concept of Markov equivalence. When two causal

diagrams yield the same sets of conditional independence relationships, they are

called Markov equivalent. Thus, if two DAGs are Markov equivalent, they will have

the same set of d-separation relationships. When classifying a causal diagram into

Markov equivalence classes there are two characteristics that need to be considered:

the skeleton of the graph and its v-structure. The skeleton of a graph is a copy of

the graph with all edges being undirected. A v-structure is formed when two

non-adjacent parent nodes have a common child. For example, the only v-structure

in Figure 1 is B → C ← A. Verma and Pearl (2013) showed that causal graphs are

Markov equivalent if and only if they share the same skeleton and v-structures.

2.2 Wright’s Tracing Rules

Sewall Wright (1934) outlined tracing rules that allows the covariance between two

nodes in a causal graph to be computed. There are two concepts that are necessary

in the decomposition of covariance: the first being how to find all the causal paths

between the variables and the second is determining the root of the causal path.

Wright’s three tracing rules are:
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1. A causal path cannot pass through the same variable twice.

2. Edges in causal paths may be traversed in the opposite direction of the e↵ect

they indicate multiple times, but as soon as an edge is traversed in the

direction of its causal e↵ect, all subsequent edges in the path must also be

traversed in the direction of the e↵ect they indicate.

3. A path may contain a maximum of one bidirectional arrow.

The root of a path is the node which has all arrows pointing away from it. A

clear result from the second rule is that these paths are not allowed to contain

colliders (i.e, no path contains head-to-head arrows such as A→X ← B); in other

words, there can only be one root for every path we are tracing while decomposing a

DAG. Wright (1934) showed that the covariance between any two nodes in a DAG

can be expressed as the sum of the products of a path’s coe�cients and the variance

of its respective roots.

For example, using Wright’s tracing rules on the DAG in Figure 1, there are

two paths from C to D, namely �BC�AB�AD and �AC�AD. The root of both these

paths is A, thus COV (C,D) = �2
A(�BC�AB�AD + �AC�AD). If we define

X = �A B C D�, the associated covariance matrix, Cov(X), for the causal

diagram in Figure 1 is provided in Equation 1.

�����������

�2
A �2

A�AB �2
A(�AC + �AB�BC) �2

A�AD

�2
A�AB �2

B �2
B�BC + �2

A�AB�AC �2
A�AB�AD

�2
A(�AC + �AB�BC) �2

B�BC + �2
A�AB�AC �2

C �2
A(�BC�AB�AD + �AC�AD)

�2
A�AD �2

A�AB�AD �2
A(�BC�AB�AD�AC�AD) �2

D

�����������
(1)

2.3 Confounding and Mediating Causal Structures

Two of the most discussed causal structures in literature are those of confounding

and mediating variables. A mediating variable is one that only exists on a graph as
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Figure 2: Two DAGs that are markov equivalent. Each edge is labeled with a variable
representing the e↵ect a node has on the other. In (a), variable C is a mediator of
the e↵ect of A on B. In (b), variable C is confounding the e↵ect of A on B.

a way for one variable to e↵ect another (Huntington-Klein, 2022). For example,

Figure 2a shows a causal structure for three variables A, B, and C. Since the only

path through C is a way for A to e↵ect B, we can say C is a mediator for A and B.

In the case of of the mediating causal structure shown in Figure 2a, if we let

Y = �A B C�, we can use Wright’s Tracing Rules to decompose each path and

derive the diagram’s respective covariance matrix, provided in 2.

Cov(Y) =
��������

�2
A �2

A�AB + �2
A�AC�CB �2

A�AC

�2
A�AB + �2

A�AC�CB �2
B �2

A�AB�AC + �2
C�CB

�2
A�AC �2

A�AB�AC + �2
C�CB �2

C

��������
(2)

A confounding variable is one that e↵ects two other variables. For example,

Figure 2b shows a causal structure for three variables, A, B, and C. Since C e↵ects

both A and B, we can say C confounds the e↵ect of A on B. In the case of the

confounding causal structure shown in Figure 2b, if we let Z = �A B C�, we can

use Wright’s Tracing Rules to decompose each path and derive the diagram’s

respective covariance matrix, provided in Equation 3.
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Cov(Z) =
��������

�2
A �2

A�AB + �2
C�CA�CB �2

C�CA

�2
A�AB + �2

C�CA�CB �2
B �2

A�AB�CA + �2
C�CB

�2
A�AC �2

A�AB�CA + �2
C�CB �2

C

��������
(3)

A natural question to ask is ‘can a researcher determine, from data alone,

whether a variable is confounding or mediating the e↵ect of two other variables?’

This is not possible, namely because the covariance between two variables does not

determine the unidirectional e↵ect one has on another. In other words, correlation

between variables only implies associativity, not causation. This response can be

further verified by analyzing the similarities and di↵erences in the covariance

matrices of mediating and confounding structures, defined by Equations 2 and 3.

By looking at the specific entries of the confounding and mediating covariance

matrices, it can be confirmed that the matrices can only be equal if �2
C�CA = �2

A�AC .

These quantities, are in fact, equal due to a well-known result in general simple

linear regression, where y = �0 + �xyx + ✏, that �xy = �y

�x
⇢xy (Pearl, 2013). Extending

this to our question, �2
C�CA = �2

C
�A
�C

⇢CA = �C�A⇢AC = �2
A

�C
�A

⇢AC = �2
A�AC.

Therefore, the covariance matrices induced by confounding and mediating

causal structures are equivalent. This means it would be impossible to distinguish

the two structures given only raw data as they generate the same induced

dependencies; in other words, the confounding and mediating causal structures are

Markov equivalent. The theorem proved by Verma and Pearl (2013) makes it much

easier to determine that these causal structures are equivalent as both the

confounding and mediating causal structures, drawn in Figure 2, share the same

skeleton and have no v-structures.
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Figure 3: Two DAGs that share the same skeleton but are not Markov equivalent as
their v-structures are di↵erent. (a) has two v-structures, A→ C ← B and A→D ← B.
(b) has a single v-structure, C → A←D.

2.4 Non Markov-Equivalent Structures

An example of two DAGs that are not Markov equivalent is shown in Figure 3.

Both DAGs pictured in this figure have the same skeleton. However, Figure 3a has

two v-structures, A→ C ← B and A→D ← B, and 3b only has one, C → A←D.

Thus, these two diagrams are not Markov equivalent and have di↵erent induced

dependencies. For example, in Figure 3a, using Wright’s tracing rules it is clear that

A and B are independent, or COV (A,B) = 0. However, in Figure 3b no variables

are independent of each other. Specifically, COV (A,B) = �2
B�BD�DA + �2

C�CA�CB,

which is non-zero whenever �2
A > 0 or �2

C > 0.

3 Simulation Study

Fitting models to simulated data is common practice in many fields of statistics to

verify that models are functioning correctly. In this section data will be simulated

from a confounding causal structure and the underlying parameters of the structural

equation model will be estimated. To simulate data, one must follow a series of four

steps, outlined below.

1. Choose a causal diagram to simulate. The first step of simulating data is to

choose a causal diagram. For the purposes of this tutorial, the confounding
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structure shown in Figure 2b will be simulated.

2. Specify the model. The model must follow the assumptions encoded in the

causal diagram. Each node may follow a di↵erent distribution. In this

simulation the model is specified as follows:

C
iid∼ N(µC ,�

2
C),

A
iid∼ N(�0A + �CAC, ✏

2
A),

B
iid∼ N(�0B + �ABA + �CBC, ✏

2
B)

(4)

3. Assign data-generating values to all model parameters. In this simulation the

parameters will be assigned the values µC = 3, ✏A = ✏B = �C = 1, �0A = �0B = 0,
�CA = 2, �AB = 3, and �CB = 4.

4. Generate data from the model described in Step 2. For this simulation, 100

observations are going to be simulated from Equation 4.

Figure 4: Scatter plots depicting relationships between the variables of A, B, and C.
Values were generated from the model specified in Equation 4.

It is good practice to visualize data throughout an analysis. The relationship

between the 100 observations simulated from Equation 4 can be observed in the
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Table 2: Estimated model parameters for a sample size of 100 observations, generated
from Equation 4.

Parameter True Value Point Estimate 95 % Confidence Interval
�AC 2 2.01 (1.82,2.21)
�AB 3 2.97 (2.86,3.21)
�CB 4 3.92 (3.30,4.06)
�2
C 1 1.00
✏A 1 0.97
✏B 1 1.07

pairwise scatter plots shown in Figure 4. Through visual inspection of the

relationship between A vs. C, one can verify that �0A ≈ 0 and �CA ≈ 2.
There are several methods within causal inference available to estimate the

parameters of an underlying model. Regression is an appropriate method to

estimate parameters when there are no severe violations of the assumptions of

linearity, homoscedasticity, normality of residuals, and influential points. An

assumption of regression within the context of causal inference that becomes

particularly important is that the covariates in the model are exogenous to, or

uncorrelated with, the error term Huntington-Klein (2022).

To estimate all the parameters in the assumed structural equation model, two

models need to be fit: A ∼ N(�0A + �CAC, ✏
2
A) and B ∼ (�0B + �ABA + �CBC, ✏

2
B).

The regression coe�cients are estimated with their standard errors and the residual

standard error from these models are used to estimate ✏A and ✏B respectively. The

sample mean and sample variance of C are estimators for µC and �2
C respectively.

The data visualized in Figure 4 were analyzed using regression in R (R Core

Team, 2023). The code written to estimate the parameters in the underlying model

is provided in the appendix (Section 6.1). The estimates, along with their associated

95% confidence intervals for the data visualized in Figure 4 are listed in Table 2.

The process of simulation and estimation was iterated 1000 times and plots of the

14



parameter estimates from these thousand iterations are shown in Figure 5. These

plots show that the parameter estimates were all centered around their true

data-generating values.

Figure 5: Histograms of parameter estimates, using regression, from 1000 iterations
of data simulated from the model specified in Equation 4. The data-generating values
are plotted as vertical lines in each plot.

4 Conclusion

There has been much discussion about Markov equivalence classes and the issues

researchers face when trying to distinguish causal structures from observational

data. When doing a causal analysis, unless the researcher has outside information,

their research can at most only determine which Markov equivalence class the

underlying causal structure lies in. The simulation study presented in Section 3 gave

an example of how to conduct a cursory path analysis of a hypothesized structure.

Several R packages exist for more in-depth analysis in structural equation

modeling such as dagR (Breitling et al., 2022), DAGitty (Textor et al., 2016) and

lavaan (Rosseel, 2012). DagR is a visualization tool that integrates well with a

variety of other R packages. DAGitty is used to construct DAGs to find underlying

d-separation relationships. As a visualization tool, DAGitty is particularly adept at
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identifying confounding variables. Lavaan can simulate data from a specified DAG.

It also can analyze data through path analysis, confirmatory factor analysis, or

latent variable modeling. However a researcher chooses to analyze data, when

reporting the results of a causal analysis it is important to remember Pearl’s golden

rule that “behind every causal conclusion there must lie some causal assumption

that is not testable in observational studies” and state all causal assumptions they

made during their analysis (Pearl, 2009).
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6 Appendix

6.1 Simulation Code

# Function that simulates data from a confounding variable

sim_confound <- \(n = 100, beta_ca = 2, beta_ab =3, beta_cb = 4,

mu_c = 3, eps_A = 1,

eps_B = 1,sigma_C = 1){

C = rnorm(n, mean = mu_c, sd = eps_C^2)

A = beta_ca*c +rnorm(n, mean = 0, sd = eps_A^2)

B = beta_ab*a + beta_cb*c+rnorm(n, mean = 0, sd = eps_B^2)

return(data.frame(A,B,C))

}

#Number of simulations

n_sims<-1000

#Initialize values

beta_ca <- rep(NA, n_sims)

beta_ab <- rep(NA, n_sims)

beta_cb <- rep(NA, n_sims)

varC <- rep(NA, n_sims)

epsA <- rep(NA, n_sims)

epsB <- rep(NA, n_sims)

# Iterate

for(i in 1:n_sims){

dat <- sim_confound()

17



## Estimate path coefficients via regression

beta_ca[i] <- lm(A~C, data = dat)$coefficients["C"]

beta_ab[i] <- lm(B~A+C, data = dat)$coefficients["A"]

beta_cb[i] <- lm(B~C+A, data= dat)$coefficients["C"]

## Estimate epsilons

varC[i] <- var(dat$C)

epsA[i] <- sigma(lm(A~C, data = dat))

epsB[i]<- sigma(lm(B~C+A, data= dat))

}
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